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Abstract. We determine the propagation properties of a quantum particle in ad-dimensional
lattice with hopping disorder, delta correlated in time. The system is delocalized: the averaged
transition probability shows a diffusive behaviour. Then, superimposed on the disorder, we
consider a bias favouring the motion with a given orientation, as in the dynamics of flux lines in
superconductors. The result is an effective Liouvillian for the density matrix, which is characterized
by competition between single-particle and pair hopping. In this case the transition probability is
determined in terms of excitonic motion, each exciton being extended along the bias direction.
In the small-bias regime the hopping disorder is almost ineffective along the Bragg lines of the
Brillouin zone, where drift dominates. Elsewhere the system undergoes diffusion. In the opposite
regime we find the single-sided-hopping spectrum, as expected from the bias term, but, due to the
hopping disorder, this undergoes an abrupt change of sign at the Bragg lines.

1. Introduction

Various studies have been devoted to quantum propagation in disordered lattices, including
site and hopping disorder. Here we study time-dependent hopping: in general the adiabatic
motion of a particle in a ‘hot’ background. The motion of a charge in a rapidly fluctuating
effective magnetic field belongs to this class: here we give a lattice version of the problem.
Time-dependent fluctuations of the magnetic field have been considered by Aronov and
Wolfle in studying the behaviour of doped high-Tc materials, close to the metal–insulator
transition [2]: their analysis was motivated by magnetoresistance measurements [3] on Bi
2:2:0:1 compounds. Tight-binding Hamiltonians were also considered for the dynamics of
flux lines in superconductors, a widely investigated topic, both at the experimental and at
the theoretical level: see, e.g., [5, 6] and references therein. Columnar defects, artificially
produced by energetic heavy-ion radiation, have been used in order to pin flux lines and
reduce dissipation. Greatly enhanced pinning has been obtained, e.g., in YBa2Cu3O7 crystals
with aligned columnar defects, produced by Sn-ion radiation [7, 8]. In the corresponding
path integral description, the Euclidean time is the vortex line parameter and the horizontal
coordinates of the columnar defects [9] define the lattice nodes. In a hollow cylindrical super-
conductor the longitudinal current creates a transverse magnetic field which forces the flux
lines to tilt with respect to the vertical alignment. In the Hamiltonian this translates into a
term that is linear in the momentum [10,11], and anti-Hermitian. It can obviously be read as
originating from an imaginary vector potential. This term explicitly breaks the space inversion
symmetry: in fact the particle has different left- and right-hopping amplitudes (in a given
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direction). This is not to be confused with a chiral particle, characterized by single-sided
but unitary propagation. Motion with a preferred orientation arises in various non-quantum-
mechanical contexts, e.g. in population dynamics [12], in the transport of passive scalars in
fluids [4], in directed percolation. The non-Hermitian hopping term has the effect of depinning
the vortex lines, as shown by various authors: [10, 13, 14, 16]. Here we first consider time-
dependent hopping with no bias. Due to the averaging, the appropriate object to be studied,
rather than the wave function, is the density matrix. In terms of it, one reconstructs every
transition probability.

Our approach relies on a second-quantization formalism, which proved to be very efficient
in describing edge states in quantum Hall systems [1]. In the limit of fast fluctuations, memory
effects are cancelled and the effective dynamics is described by a Liouvillian operator (see
section 2). We find that the quantum particle undergoes classical diffusion. In section 3 we
add the deterministic bias: the Liouvillian, in the second-quantization formalism, then takes
the form of the so-called pair-hopping model Hamiltonian [17, 18]. Pure diffusion is now
always frustrated; we find excitonic states, propagating with a non-trivial dispersion law. In
section 4 we summarize our results and compare them with related work. In appendix A we
derive a property for averages of time-ordered exponential operators; in appendix B we show
that the transition probability, in the Hermitian case, can be obtained by resumming the ladder
diagrams, i.e. that it coincides with the diffuson amplitude.

2. Disordered lattice

We start with a lattice Hamiltonian with time-dependent hopping disorder, including an anti-
Hermitian term:

Ĥ0(t) = −
∑
x,µ

[(u(x, µ; t) +w(x,µ; t))|x〉〈x + eµ|

+ (u∗(x, µ; t)− w∗(x, µ; t))|x + eµ〉〈x|]
whereµ = 1, 2, . . . , d; d is the lattice dimension. We assume zero average Gaussian
coefficients; the various amplitudes are mutually independent, with the correlators

〈u(x, µ; t)u∗(x ′, µ′; t ′)〉 = δ(t − t ′)δ(x − x ′)δµ,µ′Du(x, µ; t)
〈w(x,µ; t)w∗(x ′, µ′; t ′)〉 = δ(t − t ′)δ(x − x ′)δµ,µ′Dw(x, µ; t).

As previously announced, we deal with the density operator in the second-quantization
formalism. We introduce two, mutually commuting, Fermi (or equivalently Bose) operators
â(x) and b̂(x), related to two independent copies of the system. Before averaging, they are
associated with the retarded and advanced particle, and evolve independently with evolution
operatorsÛ andÛ ∗. We define the operator̂F as the second-quantized evolution operator: its
matrix elements in the (1 + 1)-particle sector are

〈0|b̂(y)â(x)F̂ (t, t ′)â+(x ′)b̂+(y ′)|0〉 = 〈x, y|Û (t, t ′)⊗ Û∗(t, t ′)|x ′, y ′〉. (1)

F̂ is associated with the following two-particle Hamiltonian:

Ĥ (t) = −
∑
x,µ

[u(x, µ; t)Ĉ(x, µ) + u∗(x, µ; t)Ĉ+(x, µ)

+ w(x,µ; t)B̂(x, µ)− w∗(x, µ; t)B̂+(x, µ)] (2)

where

Ĉ(x, µ) = â+(x)â(x + eµ)− b̂+(x + eµ)b̂(x)

B̂(x, µ) = â+(x)â(x + eµ) + b̂+(x + eµ)b̂(x)

Q̂(x) = â+(x)â(x)− b̂+(x)b̂(x).
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Using the fact that the disorder isδ-correlated in time, one can exactly perform the averaging
of the Neumann series and re-exponentiate the result, thus obtaining

〈F̂ (t, t ′)〉 = T exp

[
−sgn(t − t ′)

∫ t

t ′
dτ Ĥeff (τ )

]
. (3)

The effective LiouvillianĤeff has the form

Ĥeff (t) = 1

2

∑
x,µ

[Du(x, µ; t){Ĉ(x, µ), Ĉ+(x, µ)} −Dw(x, µ; t){B̂(x, µ), B̂+(x, µ)}] (4)

where{ , } denotes the anticommutator. The averaging has generated a quartic term, which
couples the particle and the antiparticle. The non-linearity can easily be handled in this case:
in factĤeff can be written as a quantum spin Hamiltonian [1], if one starts with the fermionic
representation. One verifies that an angular momentum algebra is obtained fromâ(x) and
b̂(x). The angular momentum is given by

Ĵ +(x) = â+(x)b̂+(x)

2Ĵ3(x) + 1= â+(x)â(x) + b̂+(x)b̂(x) = N̂(x). (5)

If we defineD±,x,µ(t) = Du(x, µ; t)±Dw(x, µ; t), the Liouvillian turns into

Ĥeff (t) = −1

2

∑
x,µ

[4D+,x,µ(t)(Ĵ1(x)Ĵ1(x + eµ) + Ĵ2(x)Ĵ2(x + eµ))

+D−,x,µ(t)(4Ĵ3(x)Ĵ3(x + eµ) + Q̂(x)Q̂(x + eµ)− 1)].

The planar term, which describes pair hopping, is ferromagnetic. The vertical term, which
counts the particles, turns from ferromagnetic to antiferromagnetic as the anti-Hermitian
disorder prevails over the Hermitian disorder. The angular momentum operators commute
with the charge operatorŝQ(x). Similarly the total numberNa of a-type particles,Nb, and
Q̂(x) commute with the Hamiltonian. Obviously, as long as we are concerned with the density
matrix, we are only involved in theNa = Nb = 1 sector, as made explicit in the matrix
elements written in equation (1). In a first class of eigenstates the particles are separated and
do not propagate, since the hopping term acts only on doubly occupied sites, i.e. on pure states
of the form|x〉〈x|. Let us describe such eigenstates as localized. A second class is given by
plane-wave superpositions (magnons) of doubly occupied sites (in the case of homogeneous
disorder):

Ĵ +(p)|0〉 = 1

(2π)d/2
∑
x

Ĵ +(x) exp(ipx)|0〉 (|pµ| 6 π) (6)

with eigenvalues

E(p; t) = 2
∑
µ

[D−,µ(t)−D+,µ(t) cospµ]. (7)

The site transition probability is then decomposed into plane-wave contributions:

〈|〈x|Û (t, t ′)|x ′〉|2〉 = 1

(2π)d

∫ π

−π
dp exp

[
ip(x − x ′)− sgn(t − t ′)

∫ t

t ′
dτ E(p; τ)

]
. (8)

The magnons are insensitive to any site potential: this rather unintuitive result depends
on the delta correlation of the hopping amplitudes as shown in appendix C. Hence, with time-
independent correlators and Hermitian disorder, the Liouvillian reduces to a lattice Laplacian:
it is no surprise then that diffusive (long-range-order) modes are the outcome of averaging over
fast time fluctuations. If the disorder has an anti-Hermitian part, hopping rates locally break
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space inversion invariance, and make some diffusive modes unstable. In fact, the spectrum
of the Liouvillian is no longer positive definite: from the minus sign in the exponent in
equation (3), one sees that the portion of the Brillouin zone inside the surfaceE(p) = 0
becomes unstable. Let us comment on the connection with the problem of ad = 2 particle
in a magnetic field. In two dimensions, a fluctuating magnetic field orthogonal to the plane
would be described by a hopping coefficient of the formu(x, µ, t) = exp(iθ(x, µ, t)) with
θ(x, µ, t) Gaussian; in our model,u is instead Gaussian. In spite of this major difference,
the present solution confirms a previous result on the motion in a fluctuating magnetic field,
obtained in the continuum case [15]. The effective motion of the quantum particle is in both
cases classical diffusion. We are not able to understand whether this is a mere coincidence or
is related to some general property shared by the two approaches.

3. Biased system with disorder

We add now a deterministic asymmetric hopping, which describes a biased transport in a
preferred direction [12]. The Hamiltonian, for the particle–antiparticle system, becomes

Ĥbias =
∑
x,µ

δµ,µα[exp(−k)â+(x + eµ)â(x) + exp(k)â+(x)â(x + eµ)]

−
∑
x,µ

δµ,µα[exp(−k)b̂+(x + eµ)b̂(x) + exp(k)b̂+(x)b̂(x + eµ)] (9)

wherek andα are real. Since in the perturbative series one can isolate the deterministic
term and expand in the disorder term (see appendix A), the total effective LiouvillianL̂ is
simply L̂ = i sgn(t − t ′)Ĥeff (t) + Ĥbias , whereĤeff is given in equation (4). If we consider
homogeneous hopping disorder, we recover a non-Hermitian version of the so-called pair-
hopping model Hamiltonian [18]. Notice that here the pair-hopping term is intrinsically
dissipative. Neither the magnons nor the eigenstates of the bias term (free-particle states)
are eigenstates. It is nonetheless possible to determine two families of solutions, which can be
regarded as the natural extension of the previously determined ones (localized and diffusive,
respectively). The wave functionf (x, y), in the two-particle sector(Na = Nb = 1), satisfies
the eigenvalue equation

α[e−kf (x − eµ, y) + ekf (x + eµ, y)− e−kf (x, y − eµ)− ekf (x, y + eµ)]

+ i
∑
µ

D+(µ)δx,y [f (x + eµ, y + eµ) + f (x − eµ, y − eµ)] − 2D−(µ)f (x, y)

= Ef (x, y) (10)

where, in terms of the previous section’s notation, we haveE ≡ −iE. Since the pair-hopping
term vanishes at singly occupied sites, two-particle states, separated in every other direction
but the bias one, will only be acted on by the single-hopping term. This first class of solutions
is the obvious extension of the formerly localized ones. In the second class there is no longer
separation orthogonal to the bias. Let us proceed to the details of the solution. Upon writingf

as a function of the baricentric coordinateR = (x+y)/2 and of the relative coordinater = x−y,
one easily identifies the eigenspaceS0, which can be spanned by the eigenfunctions:

fE,n,R0(R, r) = exp(iPR + iqµrµ)

[ ∏
α,µ 6=µ

δrα,nα δRµ,R0
µ

]
(11)

whereR0, n are(d − 1)-dimensional vectors, playing the role of degeneracy indexes. They
are the projections of the baricentric and relative coordinates on the spaceX⊥, orthogonal to
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the bias. The eigenvalues then, up to a constant, coincide with the eigenvalues ofĤbias :

E(Pµ, qµ) = −4α sin[(P/2)µ − ik] sin[qµ] − 2i
∑
µ

D−(µ). (12)

One verifies thatS0 is the eigenspace also upon adding a static disordered potentialV (x).
The spectrum and eigenfunctions will then reproduce the features discussed by Hatano and
Nelson [10]. To go over to the second class of solutions we first Fourier transform the equation:

(E − 2α cos[(P/2− q)µ − ik] + 2α cos[(P/2 +q)µ − ik])f (P, q)

= − 2i
∑
µ

D−(µ)f (P, q) + 2i
∑
µ

D+(µ) cos(Pµ)
1

(2π)d

∫ +π

−π
dq f (P, q).

(13)

After integrating overq, we get

(i/2π)
∫ +π

−π

dq ′

(η/z) + sin(q ′)
= z

4ξ
(14)

where

η = (E/4) + (i/2)
∑
µ

D−(µ) z = α sin[Pµ/2− ik] ξ ≡ 1

2

∑
µ

D+(µ) cos(Pµ)

where the integral is one dimensional. The eigenvalues are

E(P ) = −2i
∑
µ

D−(µ) + 4iξ

[
1−

(
z

ξ

)2]1/2

. (15)

Notice that the solution is invariant under the symmetryP → −P, k → −k; of the two
branches of the square root, we take the one that, asα → 0, reduces to the spectrum of the
unbiased case (equation (7)). The wave functionfP0(P, q), associated withE(P0), has the
form

fP0(P, q) =
iξδ(P − P0)

z sin(qµ) + iξ [1− (z/ξ)2]1/2
. (16)

In the coordinate representation one finds an exponential behaviour:f ≈ ζ rµ± , where

ζ± = ξ

z

[[
1−

(
z

ξ

)2]1/2

± 1

]
(ζ+ζ− = −1) (17)

and± is to be chosen according to the condition|ζ±| < 1.
The functionf is divergent asrµ→−∞, but when computing the probability of transition

between two sites one only needsrµ = 0 both inf and in the solution of the transpose equation.
We finally examine the case withζ± lying on the unit circle.

The condition|ζ±| = 1 impliesξ/z real, with absolute value smaller than one: this is true
only in the absence of asymmetry in the deterministic term (k = 0), or whenPµ = ±π . We
have an exciton, extended alongµ = µ, with global momentumP0 and relative momentum
peff :

peff =


arccos

(
ξ(P0)

α sin[(P0)µ/2]

)
(k = 0)

arccos

(
ξ(P0)

α cosh[k]

)
(Pµ = ±π).

(18)

The spectrum of the LiouvillianE(P ) (equation (15)) ford = 2, with bias in theµ = 1
direction, and with Hermitian, isotropic disorder (Dw(µ) = 0,Du(µ) = D), is exhibited in
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the figures. The imaginary partEI (P ) of E(P ) describes the reversible motion, with drift
velocity v = ∇PEI (P ). The real partER(P ) describes the irreversible motion: fork 6= 0 a
region of instability at the centre of the Brillouin zone appears. Whenα/D is small enough,
i.e. when disorder dominates, drift is found along the Bragg linesP2 = ±P1±π (see figure 1);
among such lines,EI (P ) is practically zero and the exciton predominantly undergoes diffusion.
Upon increasingα, the bias exponentk tilts the planeEI (P ) in theP1-direction, thus enforcing
drift at the centre of the Brillouin zone also. This is exhibited in figure 2. At very strong bias
(k large) one would expect the single-sided hopping to dominate. The situation is rather
different (see figure 3). One easily verifies that

E(P ) ≈ sgn[(cos(p1) + cos(p2)](α exp(k))(cos(p1/2) + i sin(p1/2)

where the last factor is indeed the eigenvalue of the bias operator in the single-sided-hopping
limit. The effect of disorder is in the first factor: an abrupt change in sign of both the dissipative
and reversible parts of the spectrum at the Bragg lines. Let us finally discuss the casek = 0,
which describes a particle with deterministic anisotropic diffusion plus disorder. On qualitative
grounds, everything goes as in figure 1, but nowER(P ) is always positive (no instability
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Figure 1. (a) The real partEr of E(P ), over one half of the Brillouin zone(−π < P1 < π ,
0< P2 < π), for the parametersD = 1.0, k = 0.5, α = 0.1. (b) The imaginary partEi of E(P ),
for the same parameters as in (a).
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Figure 2. Competition between diffusion and bias: as for figure 1, but withD = 1.0, k = 0.6,
α = 0.75.

occurs). Reversible and irreversible motion are now completely separated, depending onP .
Around the Bragg lines, we have only drift, apart from a constant damping factor; in the
complementary region we find pure diffusion, withEI (P ) = 0 (no drift). The drift region
tends to broaden asα is increased.

4. Conclusions

We have discussed the motion of a particle over a lattice with rapidly fluctuating hopping
amplitudes: the model describes a massive quantum object coupled with a high temperature
background. In our formalism the transition probability is written as a transition amplitude
for a two-particle quantum system. This makes the operation of averaging the probability
over classical fluctuations simpler. Before averaging, the two particles evolve independently,
respectively forward and backward in time; after averaging, they interact and their motion
becomes irreversible. Their effective Hamiltonian, which is simply the Liouvillian of the
density matrix for the original system, has a quartic interaction, which can be readily put in
the form of a Heisenberg Hamiltonian. We determined the steady states of the Liouvillian:
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Figure 3. Strong bias:D = 1.0, k = 5,α = 0.75.

with them, one computes the density matrix and any single-particle transition probability (see
equations (1), (8)). A first class of steady states has the two particles physically separated and
localized. The site transition probability depends on double occupancy states: it is a sum of
plane waves, evolving in time with a diffusive law. The generic behaviour of such quantum
systems is then diffusion, and this holds true even in the presence of a disordered potential, as
shown in appendix C: since the hopping amplitudes are delta correlated in time, they destroy the
phase coherence of the wave function. Quantum interference effects, essential for localization,
are thus absent. Diffusion in a quantum-mechanical system was found in the Harper model
at its critical point [19, 20]. The present result, obtained from a lattice model, confirms a
previous one, on the motion of a particle in a rapidly fluctuating magnetic field, derived in
the continuum case [15]. In section 3 we added a deterministic, anisotropic bias, enforcing
a favoured orientation along a given direction; as already illustrated, this term arises quite
naturally in describing tilted vortex motion in superconductors. The Liouvillian then takes
the form of the so-called pair-hopping model Hamiltonian (i.e. it includes both single-particle
and pair hopping, and the two terms do not commute). In our context the coupling constants
are complex, since we are mixing reversible and irreversible motion. Two classes of steady
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states can be found. In the first class the two particles do not interact, provided that their wave
packets do not overlap in the plane orthogonal to the bias. On such states the hopping disorder
has practically no effect, and the interesting physics is the depinning transition, as described
by Hatano and Nelson. In the second class the two particles form an exciton, extended along
the bias direction. The dispersion law is a non-trivial function of the exciton momentum. For
small enough bias, the Brillouin zone splits into a diffusion-dominated and a drift-dominated
part, the latter lying around the Bragg lines. The site transition probability, which adds over
the exciton contributions, is the sum of two parts: essentially reversible evolution around the
Bragg lines, and irreversible diffusion with no drift in the complementary region. Notice that
this is different from a mere sum of the two types of motion, since the separation involves
different regions of momenta. For very large bias the dispersion law reduces to the one-way
hopping form exp(ip1/2), but multiplied by the sign of cos(p1)+ cos(p2): this is the signature
of the hopping disorder, which translates into a singular behaviour along the Bragg lines. It is
seen then that a perturbative approach fails also in the extremal regimes.

Appendix A

We first point out here a relevant property of Gaussian averages of time-ordered exponential
operators, holding for perturbations delta correlated in time. Let us consider the operator
Ĥ (t) = Ĥ0(t) + V̂ (t), where the perturbation term is given through its correlator

〈V̂ (t)⊗ V̂ (t ′)〉 = δ(t − t ′)Â(t).
One has, by definition,

T exp

[∫ t

t ′
dτ Ĥ (τ )

]
=

∞∑
l=0,p=±

pl
∫
tl+1=t ′

[ l∏
m=1

dtm θ(p(tm − tm+1))Ĥ (tm)

]
θ(p(t − t1)).

The averaging leads to〈
T exp

[∫ t

t ′
dτ Ĥ (τ )

]〉
= T exp

[∫ t

t ′
dτ [Ĥ0(τ ) + sgn(t − t ′)V̂eff (τ )]

]
〈V̂ (t)V̂ (t ′)〉 = 2δ(t − t ′)V̂eff (t).

Appendix B

The calculation of the averaged transition probability (equation (8)), in the Hermitian case,
can be performed also by means of an exact resummation of ladder diagrams; the probability
then coincides with the diffuson amplitude. The retarded and advanced Green’s functions are

[−i ∂t ∓ iη + ĥ(t)]Ĝ±(t, t ′) = δ(t − t ′)
Ĝ±(t, t ′) = ±iθ(±(t − t ′))Û(t, t ′)
Ĝ+(t, t ′) = [Ĝ−(t ′, t)]+

|〈x|Û (t, t ′)|x ′〉|2 = |〈x|Ĝ+(t, t ′)|x ′〉|2 + |〈x|Ĝ−(t, t ′)|x ′〉|2.
The averaging of thêU -operator is performed first; we obtain an effective single-particle
generator̂heff (t):

〈Û (t, t ′)〉 = T exp

[
−sgn(t − t ′)

∫ t

t ′
dτ ĥeff (τ )

]
ĥeff (t) =

∑
µ,x

D(µ; t)|x〉〈x|.
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Let us consider now the perturbative expansion for the average

〈x|Ĝ+(t, t ′)|x ′〉〈x ′|Ĝ−(t ′, t)|x〉
where ĥ(t) is the perturbation. One can show that the expansion can be written as the
sum of particle–antiparticle diagrams where the ‘free-propagator’ lines are substituted for
with the exact averaged Green’s functionsĜ±av, and the contractions involve only particle
and antiparticle disorder vertices. In fact, when contracting particle–particle vertices one is
computing contributions to the averaged propagator. Due to causality and to delta correlation
in time, crossed diagrams are zero; one is left with the sum of ladder diagrams, i.e. only the
diffuson survives. The basic contribution to the ladder has the form

〈t, x; t, x|M̂|t ′, x ′; t ′, x ′〉 =
∑
y,y

〈〈x|ĥ(t)|y〉〈y|ĥ(t)|x〉〉av〈y|Ĝ+
av(t, t

′)|x ′〉〈x ′|Ĝ−av(t ′, t)|y〉

= δ(t − t)δx,xδx ′,x ′θ(t − t ′)θ(t − t ′)
∑
µ

D(µ; t)[δx,x ′−eµ + δx,x ′+eµ ]

× exp

[
−
∑
µ

(∫ t

t ′
dτ D(µ; τ)−

∫ t

t ′
dτ D(µ; τ)

)]
.

Let us introduce the following operator:

〈t, x|P̂ |t ′, x ′〉 = θ(t − t ′)
∑
µ

D(µ; t)[δx,x ′−eµ + δx,x ′+eµ ] exp

[
−2

∑
µ

∫ t

t ′
dτ D(µ; τ)

]
and then use the identity

〈t, x; t, x|M̂l|t ′, x ′; t ′, x ′〉 = δ(t − t)δx,xδx ′,x ′ 〈t, x|P̂ l|t ′, x ′〉.
The diffuson amplitude1(t, x; t ′, x ′) is given by

1(t, x; t ′, x ′) =
∫

dt1 θ(t − t1) exp

[
−2

∑
µ

∫ t

t1

dτ D(µ; τ)
]
〈t1, x|

∞∑
l=0

P̂ l|t ′, x ′〉

= θ(t − t ′)〈x|T exp

[∫ t

t ′
dτ

(
Ŝ(τ )− 2

∑
µ

D(µ; τ)
)]
|x ′〉

Ŝ(t) =
∑
x,µ

D(µ; t)[|x〉〈x + eµ| + |x + eµ〉〈x|].

In the momentum representation one recovers diffusion:

1(t, x; t ′, x ′) = θ(t − t ′)
(2π)d

∫ +π

−π
dk exp

[
ik(x − x ′)− 2

∑
µ

∫ t

t ′
dτ D(µ; τ)(1− coskµ)

]
.

Appendix C

Let us consider the interaction representation by taking the hopping term as a perturbation; we
have the evolution operator̂O:

Ô(t, t0) =
∑
x

exp

[
−i
∫ t

t0

dτ V (x; τ)
]
|x〉〈x| (C.1)

The transformed Hamiltonian̂h(t) is then:

Ô+(t, t0)ĥ0(t)Ô(t, t0) = ĥ(t).



Quantum motion with time-dependent disorder 7567

One verifies that̂h(t) is obtained fromĥ0(t) through the substitution

u(x, µ; t)→ u(x, µ; t) exp

[
i
∫ t

t0

dτ (V (x + eµ; τ)− V (x; τ))
]

w(x,µ; t)→ w(x,µ; t) exp

[
i
∫ t

t0

dτ (V (x + eµ; τ)− V (x; τ))
]
.

(C.2)

The invariance of correlators under this transformation is the origin of the independence of
equation (8) of the potential. Notice further that the following identity holds in general:

Û0(t, t
′) = Ô(t, t0)Û(t, t ′)Ô+(t ′, t0) (C.3)

whereÛ0 andÛ are the evolution operators of the original Hamiltonianĥ0 (see equation (1))
and ofĥ respectively.
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